

Introduction to Unix

Please fill out the pre-event section on the feedback forms.

Intro/My style

● Play about!
● Ask questions!
● Introvert/Anxious/English not your first language – I

hope you feel comfortable enough to ask, but if not,
ask Ramon or Chris, and he’ll help or ask for you.

● This course will only help if you practice afterwards.

Type carefully

● Green text is what to type
● Copy-paste is fine, but you’ll learn better by typing

– Don’t blindly copy-and-paste what’s written. Think about
why each word is there. Ask questions.

– Copy-pasting errors into google is encouraged.

● Type carefully.
– Case matters

– Being completely accurate matters

– Read the errors!

Unix Background

● Origins back in the ‘70s
● Many different backend bits
● What you see should, mostly, be the same
● Most of the internet.
● Influenced most commant lines (inc. R and Matlab)

● Pretty darn useful.

Logging in.

● Session→Hostname :
marvin.st-andrews.ac.uk

● Connection:Data → Login
details is your username

Logging in.
● Bigger font!

Window:Appearance→ Click
change and turn it up to 12 or 13.
Whatever you want.

● Session→ Name the settings
and click save.

● Click open at the bottom

What can you see

● Scary? Not sure what to do? SO MUCH
POWER

● Currently a big bucket of unknown-unknowns.

Where am I? (Navigating)

● pwd
● This prints the working directiory (tells you

where you are).
● If you forget where you are, or need to know

where you’re going next, use this. I do. Often.
(I get lost easily).

● /storage/home/users/<your username>/
– This is your “home” folder.

List what’s in a directory

● ls (list, (it’s an L not an i))
● Use this often. Very often.
● Colors indicate folders or files

Changing directory

● cd unixCourse
● This changes where you are.

– In this case, it moves us into the “unixCourse”
directory.

– Now run pwd, then ls again

● Move into the where folder, then into the list
folder.
– need a hand? Try: cd where, then ls, then cd list

Anatomy of a command

● Example:
$ cd unixCourse

● First thing is the command we’re running (here, change
directory)

● Second thing is the argument to the command (here, the
directory we want to move to)

● Often we’ll have other flags in it too
$ ls -l ./

● Flags change the behavior of the command.

More complex ls

– (make sure we’re in the ~/unixCourse/where/list/ folder)
– cd ~/unixCourse/where/list/

● Arguments can change the output of ls
– Try ls

– Try that example: ls -l ./

– Notice the difference? The -l means output as a list. ./
means “the current folder we’re in” (more on that later)

– More complex arguments: list (l) by date created (t), all
files including hidden ones (a)

– ls -lta ./

Wild cards

● * means anything and any number of them
● ? means any one character
● ls -l a* (shows everything starting with a)
● ls -l *.csv (shows all .csv files)
● ls -l * (what did this do? Why?)
● ls -l ?f.*

How do we know this stuff?!

● man <command> to see the manual
● Google

– “<thing you want to do> command line”

– “how do I <do thing> on linux”

● If man doesn’t work, try
– <command> -h

– <command> --help

– Try man ls (q exits)

– Try ls --help

Tab Completion

● Laziness is your friend
– Less typing means less effort and fewer mistakes.

● ls -l t<tab> (fancy, eh?)
● ls -l a<tab twice> (shows you the options you have)
● Remember this. It makes life a lot easier. (We’ll

come back to it in a minute)
● Also works on the first word. Try l<tab twice>. It

gives you a list of all commands that start with l.

Shortcut to commands

● Up arrow and down arrow scroll through old
commands

● history shows a list of commands you’ve
already used.

● !<number> re-runs the command next to that
number.

Escaping from where you are

● cd .. (goes up a level)
● I.e if your pwd says /home/<username>/folder, using cd .. takes

you to /home/username/

● cd - (takes you back to where you previously were)
● cd (takes you home)

Tasks:
● Move to the unixCourse/where/tabCompletion folder.

– Hint: we’re in ~/unixCourse/where/list so going up a folder
should get us closer to where we need to be, then move
ino the tabCompletion folder

– Play about with tab completion using ls<tab, repeatedly>

Absolute and relative paths

● ~ is your home folder
(/storage/home/users/<username>)

● ../ is the folder above where you are.
● ./ is your current folder
● Move to the unixCourse/where/list folder

– cd ~/unixCourse/where/list

– This is an absolute path. Works regardless of where you are

● Move to the unixCourse/where/mv_cp_rm folder
– cd ../mv_cp_rm

– This is a relative path, it only works if you’re in the right
place.

Moving and renaming files

– (make sure you’re in ~/unixCourse/where/mv_cp_rm/)
– cd ~/unixCourse/where/mv_cp_rm/
– This isn’t just a silly exercise, it’s similar to my day-to-day

cleanup in folders I’m working in, just less dull.

– Situation: the garden is messy and the as-yet un-
named rabbits have escaped.

● What have we got? (ls -l)
● Moving files uses the command mv

– How do we find out how to use it?

mv – from the man page

● man mv

NAME

 mv - move (rename) files

SYNOPSIS

 mv [OPTION]... [-T] SOURCE DEST

● Remember q quits

mv
● Move the balls into the boxes

– mv blue.ball BlueBox/ (repeat for all the balls).

– Tab complete will save you effort.

● Move also renames things. Name the all the rabbits!
– mv biggest.rabbit Elvis.rabbit

● Remember wildcards? Move all the rabbits!
– mv *.rabbit RabbitHutch/ (feel free to name them all)

– Check they’re all snuggled tight (ls RabbitHutch/)

● Mv also works for folders. Move the hutch into the
garage
– mv RabbitHutch/ Garage/

– Check them again! (run ls on the RabbitHutch in the
Garage)

Copy with cp

● Works the same as mv, mostly.
● Copy all the tools into the garage (yes, my

analogy is failing here, sorry).
– cp *.tool Shelf/

– Works on folders too…

– cp Shelf/ Garage/

Copy with cp

● Works the same as mv, mostly.
● Copy all the tools onto the shelf (yes, my

analogy is failing here, sorry).
– cp *.tools Shelf/

● Works on folders too…
– cp Shelf/ Garage/

● But only if you tell it to do it recursively (which
means it copies all of the contents too)
– cp -r Shelf/ Garage/

– (who has a shelf in their garden anyway?)

Removing things - rm

● rm IS A ONE WAY PROCESS. NO GOING BACK.
● Really really think hard about what you’re doing.
● We’re done with the tools, lets remove them all
● rm spade.tool this will remove the spade.tool file
● rm *.tool (this will remove ALL THE THINGS

ending with .tool. Is this what we want to do? Will
we need the pickaxe again?)

● Same as cp for folders, needs -r
– rm -r Shelf/

– This is even more dangerous. Be extra careful.

Removing things - rm

● rm IS A ONE WAY PROCESS. NO GOING
BACK.

● Worried about it? Use rm -i <files>
– Forces you to confirm each deletion.

Making things – mkdir and touch

● Move into the hutch (cd Garage/RabbitHutch/)
● Mkdir makes the directory.

– Give the rabbits a bed directory

– mkdir bed

● Touch, weirdly, creates empty files
– Give the rabbits some straw

– touch bed/straw.txt

– Not just text files, you can name it whatever

Find

● There were 4 rabbits. We’ve lost one!
– Seriously, I lose files more often than I’d like to admit.

● Lets find it.
● find ./ -name “*.rabbit”
● find ~/unixCourse/ -name “*.rabbit”

● Can you move it back into the hutch?

What

– Change directory to ~/unixCourse/what/

● What’s in the files?

Head and tail of a cat, more or less

● Many ways to see what’s in a file
● cat randomlyGeneratedStory.txt

● Prints the entire contents to the command line

● head randomlyGeneratedStory.txt
● Prints the top few rows, try it with -n 1

● tail randomlyGeneratedStory.txt
● Prints the bottom few rows, try it with -n 1

● less randomlyGeneratedStory.txt
● Up and down arrows navigate. Space jumps pages
● Search with /<word> (try /squash)
● Exit with q

Grep - basics

● less bigListOfGenes.csv
● When you’ve done looking at the many genes, quit with q

● grep <what you’re searching for> <file>
● If you forget either, it’ll wait. Forever. Try it!

● grep bigListOfGenes.csv
● “kill” the process with ctrl-c

Grep - basics
● grep <what you’re searching for> <file>
● grep CYP51 bigListOfGenes.csv

– Searches the file bigListOfGenes.csv for CYP51

● grep cyp51 bigListOfGenes.csv
– It’s case sensitive!

● grep -i cyp51 bigListOfGenes.csv
– -i makes it ignore case

● Point of note: You can grep everything in a folder using
– grep <search term> ./* but this is just everything in the folder.
– grep -R <search term> ./* will also search sub-folders.

● Point of note 2: If you need to grep a compressed file, use
zgrep

Wc and pipes

● wc counts the number of words, but it’ll also
count the number of lines with -l

● wc -l bigListOfGenes.csv

● What if we want to know the number of a
specific gene family in the list?
– Eg Forkhead box genes (FOX)

Wc and pipes

● wc counts the number of words, but it’ll also
count the number of lines with -l

● wc -l bigListOfGenes.csv

● What if we want to know the number of a
specific gene family in the list?

● grep -i fox bigListOfGenes.txt | wc -l

Saving output

● > overwrites what’s already in the file
● >> adds to the end of the file

● head -n 1 bigListOfGenes.csv > foxGenes.csv
– Check what’s in the file with cat foxGenes.csv

● grep -i fox bigListOfGenes.csv >> foxGenes.csv
– Check it again

● echo “whoops” > foxGenes.csv
– One last check. What happened?

Cat revisited

● Can use cat to merge files together
– cd ~/unixCourse/what/cat/

● less aGene.fasta
● cat *.fasta > all.fasta
● less all.fasta

Practical example

● Move back to the ~/unixCourse/what/ folder

● Genuine example.
● Open the bigListOfGenes.csv

● less bigListOfGenes.csv

● Are there any entries with NA on them?
● /NA searches the file for any “NA”s, / repeats the search

and moves to the next item.

● Have a look at the lines that have NA in them.
● Is there anything odd/unexpected in them?

● How many?

Practical example

● Genuine example.
● Open the bigListOfGenes.csv

● less bigListOfGenes.csv

● Are there any entries with NA on them?
● /NA

● Have a look at the lines that have NA in them.
● grep NA bigListOfGenes.csv

● How many?
● grep NA bigListOfGenes.csv | wc -l

Practical example

● We want a list of all the genes, without the ones
with NA on the padj row (at the end of the line).

● How do we find this out?

Practical example

● We want a list of all the genes, without the ones
with NA on the padj row (at the end of the line).

● grep NA$ bigListOfGenes.csv
● grep -v NA$ bigListOfGenes.csv

● So now we need to save this…

● Suggestions?

Practical example

● We want a list of all the genes, without the ones
with NA on the padj row (at the end of the line).

● grep NA$ bigListOfGenes.csv
● grep -v NA$ bigListOfGenes.csv

● So now we need to save this…

● grep -v NA$ bigListOfGenes.csv >
bigListOfGenes_removedNA.csv

Practical example

● Open the new file, check it.

● Does it look right?

Editing files with Vim

Editing files with Nano

● nano randomlyGeneratedStory.txt
● ^<letter> means <hold control><press letter>
● Arrows navigate, but <ctrl>V (down) and

<ctrl>Y (up) skip pages
● “Write out” means “save” (<ctrl>o)
● Exiting is <ctrl>-x

● Bonus! - Undo: <alt>u, redo: <alt>e

Compressed files

● Tar (archive, not compressed)
● gzip, bzip2, zip.
● Listing contents
● Uncompressing

– tar -xvf <file> for .tar files (also works on .tar.gz)

– gunzip <file> for .gz files

– bunzip2 <file> for bz2 files

– unzip <file> for .zip files

● tar -xvf compressedFiles.tar.gz

Exercises

● Check the ~/unixCourse/exercises/ folder
– Read the README.txt files for guides.

● For the renderToTSV folder:
– http://stab.st-andrews.ac.uk/wiki/index.php/Hdi2u_rendertotsv_ex

ercise

● Really far ahead:
● http://www.docs.is.ed.ac.uk/skills/documents/3523/3523.pdf
● The murder.tar file is in ~/unixCourse/exercises/

http://stab.st-andrews.ac.uk/wiki/index.php/Hdi2u_rendertotsv_exercise
http://stab.st-andrews.ac.uk/wiki/index.php/Hdi2u_rendertotsv_exercise
http://www.docs.is.ed.ac.uk/skills/documents/3523/3523.pdf

Covered so far:

● Where am I?
– pwd

– ls

– cd

– mv

– cp

– rm

– mkdir

● What’s there?
– less

– cat

– head, tail

– nano

– grep

– zipped files

– pipes (|)

– redirects (> and >>)

Toolbox

● Loops
● Scripts
● Manipulate the contents of files
●

● dos2unix, mac2unix

Situation: My research

● RNA-seq analysis
● I’ve run 2 tools to pseudo-align the reads (Kallisto and

Salmon)
● I’ve then run 3 tools on each of those (sleuth, edgeR,

DESeq2)
● Result: lots of data.

● Caveat: This isn’t the best way to approach this specific
problem, but it’s a convenient way to teach you loops.

Variables.

● Move to ~/unixCourse/where/list/

● Prefixed by $
● Save information for use later
● echo $HOME
● allFiles=$(ls *.txt)
● echo $allFiles

Loops

● Move to the loops folder
● cd ~/unixCourse/loops/

● How many files do we have?
● ls | wc -l

● Can we be bothered to run that grep line on 56
different files manually?

● Hint: Nope.

Anatomy of a for loop

● for <variable> in <things>;

do <action or actions you want to do to <variable>>;

done

● What are we looping over?
● What is it we want to do?
● We can name our variable anything!

Anatomy of a for loop

● for <variable> in <things>;

do <action or actions you want to do to <variable>>;

done

● What are we looping over?
● All of the csv files
● $(ls *.csv)

Anatomy of a for loop

● for <variable> in $(ls *.csv);

do <action or actions you want to do to <variable>>;

done

● What is it we want to do?
● Our grep line from earlier:
● grep -v NA$ bigListOfGenes.csv >

bigListOfGenes_removedNA.csv

Anatomy of a for loop

● for <variable> in $(ls *.csv);

do <thing or things you want to do>;

done

● What is it we want to do?
● Our grep line from earlier:
● grep -v NA$ <variable> > <file name but without

.csv?>_removedNA.csv

Anatomy of a for loop

● for currentFile in $(ls *.csv);

do <thing or things you want to do>;

done

● What is it we want to do?
● Our grep line from earlier:
● grep -v NA$ $currentFile > <file name but without

.csv?>_removedNA.csv

Anatomy of a for loop

● <file name but without .csv?>
● New tool: basename
● basename

~/unixCourse/loops/edgeR_cond1_left_dark24.
csv

● Strips the directory from the filename

● basename
~/unixCourse/loops/edgeR_cond1_left_dark24.
csv .csv

● Strips the directory and specified extension from the
filename

Anatomy of a for loop

● for currentFile in $(ls *.csv);

do <thing or things you want to do>;

done

● What is it we want to do?
● Our grep line from earlier:
● grep -v NA$ $currentFile > $(basename

$currentFile .csv)_removedNA.csv

Testing a for loop

● for currentFile in $(ls *.csv);

do echo “grep -v NA$ $currentFile > $
(basename $currentFile .csv)_removedNA.csv”;

done

● Test the loop with echo: prints the command so
we can check it’s right instead of blundering in
and running it all (to potential disaster).

Anatomy of a for loop

● for currentFile in $(ls *.csv);

do grep -v NA$ $currentFile > $(basename
$currentFile .csv)_removedNA.csv;

done
● Check it created the files, and check they look

right (i.e. no NA)
● Thought process:

● Identify what we need to loop over
● Identify what we need to do on each item
● Write the loop. It’s really easy when you have to do it lots!

Scripts

● Files used to re-run things you’ve already written.
● Next level of lazyness.

● Text file ending in .sh

● Move into the scripts folder
– cd ~/unixCourse/scripts/

Scripts: making the file

● Nano removeNAEntrys.sh
● Type in the loop we wrote before:
● for currentFile in $(ls *.csv);

do grep -v NA$ $currentFile > $(basename
$currentFile .csv)_removedNA.csv;

done
● <ctrl>O to save, then his enter when it asks for the file

name
● <ctrl>X to exit.

Scripts: running them

● sh removeNAEntrys.sh

● Errors: Read Them.

Comments

● # at the start of the line
● Doesn’t do anything to the code, does help you

remember what it does!

● Add a comment to the script.
● Open it with nano

– Add
#for each of the .csv files in the current folder,

this script creates a new file that has no lines that
end with NA

More complex scripts

● What we wrote only works for the current folder
● Arguements: same as we’re passing to other

programs
● cd <folder>, grep <search for> <file>

● Use $1, $2, $3… to access the first, second,
third etc argument passed

● targetFolder=$1

for currentFile in $(ls $1/*.csv);

do grep -v NA$ $currentFile > $(dirname
$currentFile)/$(basename $currentFile
.csv)_removedNA.csv;

done
● sh removeNAEntrys.sh args/
● What happens if we run it without an argument

now?

Replacing with sed

● Removing lines with NA isn’t the best solution
– (In fact, I’d argue it’s a bad solution).

● It’s adjusted p-value, so replacing it with 1 will
be a much better solution (it’ll get filtered out in
the analysis).

● cd ~/unixCourse/sed/

sed

● Stream editor.
– Very powerful, very versitile, very baffling.

● sed ‘s/NA$/1/g’ file.csv > outputFile.csv
– Substitute NA at the end of the line with 1, globally

(not just the first time)

● sed -i ‘s/NA$/1/g’ file.csv
– Edits the file inline (directly). You make a mistake

here, there’s no going back.

● sed ‘/NA$/d’ file.csv > outputFile.csv
– Find lines with NA at the end, delete them.

Sed – lets try it...

● for currentFile in $(ls *.csv); do sed ‘s/NA$/1/g’
$currentFile > $(basename $currentFile
.csv)_NAreplaced.csv; done
– Script or command line, your call.
– Don’t just copy it. Think about what each bit is doing.

● Check what we’ve done with ls, open the files and
search for what we replaced (/NA) and make sure it
did what we expected.

cut

● Sed/grep can do rows, but what about
columns?
– Again, semi-real situation.

– We only want columns 1 (gene name), 4
(log2foldchange) and padj (6) for DESeq files

● cut -d , -f 1,4,6 DESeq2_cond1_dark6.csv
– -d , means “columns are split by ,”

– -f 1,4,6 means we need columns 1, 4 and 6

● Use head to check what columns we want from
edgeR_cond1_dark6.csv, then try cut on that.

Dos2Unix & Mac2Unix

● Something to be aware of!
● Dos and old Macs use different line endings
● If you get weird errors that say thinks like

“character encoding” or “unicode not found
for...” run dos2unix or mac2unix on the file

Keep Practicing

● Mac: Unix based already! Open Terminal
● Windows: Harder. Download gitBash

– https://git-for-windows.github.io/

– Windows10 can get a proper unix command line
https://www.howtogeek.com/249966/how-to-install-a
nd-use-the-linux-bash-shell-on-windows-10/

● Get stuck? Google.

https://git-for-windows.github.io/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/

More resources

● http://rik.smith-unna.com/command_line_boo
tcamp/?id=yuw06k9pw3o
– Online resource for learning command line,

including brower based command line

● https://www.ed.ac.uk/information-services/help-
consultancy/is-skills/catalogue/program-op-sys-
catalogue/unix1
– Edinburgh’s Introduction to Unix course materials

http://rik.smith-unna.com/command_line_bootcamp/?id=yuw06k9pw3o
http://rik.smith-unna.com/command_line_bootcamp/?id=yuw06k9pw3o
https://www.ed.ac.uk/information-services/help-consultancy/is-skills/catalogue/program-op-sys-catalogue/unix1
https://www.ed.ac.uk/information-services/help-consultancy/is-skills/catalogue/program-op-sys-catalogue/unix1
https://www.ed.ac.uk/information-services/help-consultancy/is-skills/catalogue/program-op-sys-catalogue/unix1

Feedback forms

● Please fill them out! We want to improve!

